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ABSTRACT
Contrastive Learning (CL) performances as a rising approach to
address the challenge of sparse and noisy recommendation data.
Although having achieved promising results, most existing CLmeth-
ods only perform either hand-crafted data or model augmentation
for generating contrastive pairs to find a proper augmentation
operation for different datasets, which makes the model hard to
generalize. Additionally, since insufficient input data may lead the
encoder to learn collapsed embeddings, these CL methods expect
a relatively large number of training data (e.g., large batch size
or memory bank) to contrast. However, not all contrastive pairs
are always informative and discriminative enough for the training
processing. Therefore, a more general CL-based recommendation
model called Meta-optimized Contrastive Learning for sequential
Recommendation (MCLRec) is proposed in this work. By apply-
ing both data augmentation and learnable model augmentation
operations, this work innovates the standard CL framework by con-
trasting data and model augmented views for adaptively capturing
the informative features hidden in stochastic data augmentation.
Moreover, MCLRec utilizes a meta-learning manner to guide the
updating of the model augmenters, which helps to improve the
quality of contrastive pairs without enlarging the amount of in-
put data. Finally, a contrastive regularization term is considered to
encourage the augmentation model to generate more informative
augmented views and avoid too similar contrastive pairs within
the meta updating. The experimental results on commonly used
datasets validate the effectiveness of MCLRec1.

∗These authors contributed equally to this work.
†Corresponding author.
1Our code is available at https://github.com/QinHsiu/MCLRec.
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1 INTRODUCTION
Sequential Recommendation (SR) models are designed to predict a
user’s next interacted item based on his/her historical interaction
sequence [38, 47]. Compared with other types of recommender
systems, SR could accurately characterize users’ dynamic interest
in the long- and short-term, and capture the sequential pattern
hidden in the users’ behaviors. Although many of them, such as
GRU4Rec [16], SASRec [17], and BERT4Rec [35], have achieved im-
mense performance improvements, they are limited by the sparse
and noisy data. Recently, Contrastive Learning (CL) based recom-
mender systems, which leverage the information from different
views to boost the effectiveness of learned representations, are
introduced to cope with these problems [42].

We recap the basic idea of Contrastive Learning (CL), which is
to learn an expressiveness embedding by maximizing agreement
between the augmented views of the same sequence and pushing
away the views of different sequences. Thus, the choice of augmen-
tation operations becomes one of the most crucial problems for
every CL recommendation model. Particularly, according to the dif-
ferent augmentation operations, CL-based recommender systems
can be divided into three categories. The first category [5, 26, 45]
generates different views of the same sequential data by manu-
ally choosing random ‘mask’, ‘crop’, or ‘reorder’ operations on the
data level. And the second one [30] produces contrastive pairs by
‘dropout’ on the model level. And the third one [25] combines three
model augmentation methods (i.e., ‘neural mask’, ‘layer drop’, and
‘encoder complement’) with data augmentation for constructing
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view pairs. Most of them are designed as auxiliary tasks to help the
primary task of improving the recommendation accuracy.

Despite the recent advances, almost all current CL-based models
produce contrastive pairs by manually identifying which random
augmentation operations are conducted on either the data level or
model level. Nevertheless, the need for augmentation operations in
practice for different datasets always be diverse and evolving. Even
though sequence augmentation methods utilizing random sequence
or model perturbations (including ‘crop’, and ‘mask’ operations)
have been widely used and shown great superiority, only relying
on such unlearnable operations often requires domain expertise
and hand-crafted design, which may not be enough to search for a
suitable augmentation operation in such a setting.

Furthermore, self-supervised contrastive learning does not re-
quire labeled data, but insufficient input data may lead the encoder
to learn collapsed embeddings [12, 48]. Conventionally, contrastive
methods enlarge the batch (or memory bank) and increase the num-
ber of augmented views to promote the performance of models for
better representations, but many contrastive pairs maybe not be
too informative to guide the training, i.e., the representations of
positive pairs are pretty close, and negative pairs are already very
apart in the latent space [22]. Such pairs may have few contribu-
tions to the optimization and lead to contrastive methods further to
pursue the large numerous input data to collect informative ones.
Moreover, simply enlarging the batch size will highly promote the
cost and reduce training efficiency.

In this paper, we propose a general sequential recommenda-
tion model with a meta-learning algorithm, which we call Meta-
optimized Contrastive Learning for sequential Recommendation
(MCLRec). Firstly, auxiliary contrastive learning is chosen to com-
plement the primary task in both the data and model perspectives.
A learnable model augmentation method is combined with data
augmentation methods in MCLRec for extracting more expressive
features. In this way, model augmented views can serve as addi-
tional contrastive pairs and be contrasted with data augmented
views during training. Additionally, the parameters of the model
augmenters could adaptively adjust to different datasets. Secondly,
we leverage a meta manner to update the parameters of the augmen-
tation model according to the performance of the encoder. By using
such a learning paradigm, the augmentation model could learn
discriminative augmented views based on a relatively restricted
amount of interactions (e.g., small batch size). Finally, a contrastive
regularization term is considered in MCLRec by injecting a margin
between the similarities of similar pairs for avoiding feature col-
lapse and generating more informative and discriminative features.

• A learnable contrastive learning method MCLRec is proposed for
sequential recommendation. MCLRec extracts additional helpful
information from the existing positive and negative samples (gen-
erated by data augmentation) by combining data augmentation
and learnable model augmentation.
• A meta-optimized manner is leveraged in the proposed model
MCLRec to guide the training of learnable model augmenters
and help learn more discriminative features for recommendation.
• Extensive experiments on different public benchmark datasets
demonstrate that MCLRec can significantly outperform the state-
of-the-art sequential methods.

2 PRELIMINARIES
2.1 Problem Definition
Sequential Recommendation (SR) is to recommend the next item
that the user will interact with based on his/her historical inter-
action data. Assuming that user sets and item sets are U and
I respectively, user 𝑢 ∈ U has a sequence of interacted items
𝑆𝑢 = {𝑖𝑢1 , ..., 𝑖

𝑢
|𝑆𝑢 |} and 𝑖𝑢

𝑘
∈ I(1 ≤ 𝑘 ≤ |𝑆𝑢 |) represents an inter-

acted item at position 𝑘 of user 𝑢 within the sequence, where |𝑆𝑢 |
denotes the sequence length. Given the historical interactions 𝑆𝑢 ,
the goal of SR is to recommend an item from the set of items I that
the user 𝑢 may interact with at the |𝑆𝑢 | + 1 step:

argmax
𝑖∈I

𝑃 (𝑖𝑢|𝑆𝑢+1 | = 𝑖 |𝑆𝑢 ) (1)

2.2 Sequential Recommendation Model
The backbone SR model used in our model contains three parts,
(1) embedding layer, (2) representation learning layer, and (3) next
item prediction layer.

2.2.1 Embedding Layer. Firstly, the whole item sets I are em-
bedded into the same space [17, 35] and generate the item em-
bedding matrix M ∈ R |I |×𝑑 . Given the input sequence 𝑆𝑢 , the
embedding of the sequence 𝑆𝑢 is initialized to e𝑢 ∈ R𝑛×𝑑 and
e𝑢 = {m𝑠1 + p1,m𝑠2 + p2, ...,m𝑠𝑛 + p𝑛}, wherem𝑠𝑘 ∈ R𝑑 represents
the item’s embedding at the position 𝑘 in the sequence, p𝑘 ∈ R𝑑
represents the position embedding in the sequence and 𝑛 represents
the length of the sequence.

2.2.2 Representation Learning Layer. Given the sequence em-
bedding e𝑢 , a deep neural network model (e.g., SASRec [17]) repre-
sented as 𝑓\ (·) is utilized to learn the representation of the sequence.
Where \ represents the parameters of the sequential model. The
output representation H𝑢 ∈ R𝑛×𝑑 is calculated as:

H𝑢 = 𝑓\ (e𝑢 ). (2)

The last vector h𝑢𝑛 ∈ R𝑑 in H𝑢 = [h𝑢0 , h
𝑢
1 , ..., h

𝑢
𝑛] is chosen as the

representation of the sequence [30].

2.2.3 Next Item Prediction Layer. Finally, the probability of
each item ŷ = softmax(h𝑢𝑛M⊤), where ŷ ∈ R |I | . A cross-entropy
loss is optimized to maximize the probability of correct prediction:

L𝑟𝑒𝑐 = −1 ∗ ŷ[𝑔] + log(
∑︁
𝑖∈I

exp(ŷ[𝑖]))), (3)

where 𝑔 ∈ I represents the ground-truth of user 𝑢.

3 METHODOLOGY
As shown in Figure 1(a), a general contrastive learning framework
commonly consists of a stochastic data augmentation module, a
user representation encoder, and a contrastive loss function [45].
Different from this general CL paradigm that only relies on data
augmentation operation, MCLRec further leverages two learnable
augmenters to find the suitable augmentation operation adaptively.
The whole framework of the MCLRec is depicted in Figure 1(b).
Especially, MCLRec consists of three main parts, (1) augmentation
module, (2) meta-learning training strategy, and (3) contrastive
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Figure 1: General contrastive learning framework (a) 𝑣𝑠.MCLRec (b). In general contrastive learning, the applied data augmen-
tation operations are randomly chosen and the generated augmented views are directly contrastedwith each other. InMCLRec,
we utilize the learnable augmenters to generate two more model augmented views for contrastive learning and leverage the
contrastive loss to guide the training of these augmenters in a meta-optimized manner.

regularization. All these three modules would be elaborated on in
the following subsections.

3.1 Augmentation Module
Our augmentation module mainly contains two parts, a stochastic
data augmentation module, and a learnable model augmentation
module. The former is to generate two different augmented se-
quences from the same sequence, and the latter is to capture more
informative features according to these augmented sequences.

3.1.1 Stochastic Data Augmentation Module. As shown in
Figure 1(b), the first half of our model is the same as the general con-
trastive learning framework [26, 45]. The stochastic data augmen-
tation operations in MCLRec could be any classical augmentation
e.g., ‘mask’, ‘crop’, or ‘reorder’ operations, to create two positive
views of a sequence. Given a sequence 𝑆𝑢 , and a pre-defined data
augmentation function set G, we denote the generation of two
positive views as follows:

𝑆𝑢1 = 𝑔1 (𝑆𝑢 ), 𝑆𝑢2 = 𝑔2 (𝑆𝑢 ), 𝑠 .𝑡 . 𝑔1, 𝑔2 ∼ G, (4)

where 𝑔1 and 𝑔2 represent the data augmentation functions sam-
pled from G, 𝑆𝑢1 and 𝑆𝑢2 denote the different augmented sequences.
Taking 𝑆𝑢1 and 𝑆𝑢2 as inputs, the data augmentation views h̃1 and
h̃2 are generated according to Eq. (2).

3.1.2 Learnable Model Augmentation Module. General con-
trastive methods only rely on data augmentations. More recent
emerging contrastive methods leverage different dropouts to gen-
erate different augmentation models for constructing contrastive
loss [30], which provides a newway to produce augmentation views
and inspires us to take advantage of both data and model augmenta-
tion. However, no matter the previous data or model augmentation,
their inflexible and random augmentations are hard to generalize
in practice. That makes the adaptive and learnable augmentation
needed for the CL framework. Hence, we propose to use two learn-
able augmenters to capture the informative features hidden in the
stochastic data augmented views.

As shown in Figure 1(b), h̃1 and h̃2 are fed into the augmentation
model 𝑤𝜙1 (·) and 𝑤𝜙2 (·), respectively. The model augmentation

views z̃1 and z̃2 are calculated as:

z̃1 = 𝑤𝜙1 (h̃1), z̃2 = 𝑤𝜙2 (h̃2), (5)

where 𝜙1 and 𝜙2 represent the parameters of two augmenters,
which enable the augmentation operation to be learned end to end
and adaptively find optimal augmenters for different datasets. The
newly generated z̃1 and z̃2 could act as contrastive pairs to produce
more augmentation views without enlarging batch size. Due to the
powerful capability of approximating function, the simple Multi-
Layer Perceptron (MLP) [46] is chosen as the augmentation model
of MCLRec. We leave other neural network models such as self-
attention for future work studies.

3.2 Meta-Learning Training Strategy
After the introduction of learnable model augmenters, there are
two modules that with parameters need to be updated, each with
its own objective (i.e., multi-task learning for the encoder and con-
trastive task for the augmenters). Since there is possibly a gap
between these two objectives, directly updating their parameters
using joint learning may lead to suboptimal solutions [18]. There-
fore, we follow [11, 24] to perform a meta-learning strategy to guide
the training of two augmenters, which is beneficial for the model
to mine discriminative augmentation views from the sequence. The
whole training process can be concluded in two stages.

In the first stage, we contrast all four augmented views (i.e., h̃1,
h̃2, z̃1 and z̃2) in different ways and unite the recommendation loss
to update the parameters of encoder 𝑓\ (·). In the second stage, we
utilize the learned encoder 𝑓\ ′ (·) to re-encode the sequence and
use the contrastive loss related to the augmenters to optimized
update𝑤𝜙1 (·) and𝑤𝜙2 (·). Concretely, 𝑓\ (·),𝑤𝜙1 (·) and𝑤𝜙2 (·) are
iteratively trained until convergence. Especially, in the first stage,
we randomly initialize the parameters of encoder 𝑓\ (·) and two
augmenters 𝑤𝜙1 (·) and 𝑤𝜙2 (·). After getting all four augmented
views, we calculate the recommendation loss by Eq. (3) and joint
contrastive losses to update the encoder 𝑓\ (·) by back-propagation,
which can be calculated as:

L0 = L𝑟𝑒𝑐 + _L𝑐𝑙1 + 𝛽L𝑐𝑙2, (6)
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Table 1: Comparison with other contrastive learning mod-
els.

Augmentation Type CL4SRec CoSeRec LMA4Rec ICLRec DuoRec SRMA Ours

Stochastic
Data Level ✓ ✓ ✓ ✓ × ✓ ✓

Model Level × × × × ✓ ✓ ×
Learnable Model Level × × ✓ × × × ✓

where _ and 𝛽 are hyper-parameters that need to be tuned. L𝑐𝑙1
and L𝑐𝑙2 denote the two kinds of contrastive losses. The first kind
of contrastive loss acts as the same role as infoNCE loss of general
contrastive learning [3, 15], called L𝑐𝑙1, which depends only on
data augmented view h̃1 and h̃2. It can be formulated as:

L𝑐𝑙1 = L𝑐𝑜𝑛 (h̃1, h̃2), (7)

and

L𝑐𝑜𝑛 (x1, x2) = − log
𝑒𝑠 (x

1,x2)

𝑒𝑠 (x1,x2) + ∑
x∈𝑛𝑒𝑔

𝑒𝑠 (x1,x)

− log 𝑒𝑠 (x
2,x1)

𝑒𝑠 (x2,x1) + ∑
x∈𝑛𝑒𝑔

𝑒𝑠 (x2,x)
,

(8)

where (x1, x2) represents a pair of positive sample’s embedding,
𝑠 (·) represents inner product and 𝑛𝑒𝑔 indicates the negative sample
embedding set. The positive pairs obtained from the same sequence
and other 2(|B|-1) views within the same batch are treated as nega-
tive samples, where |B| denotes the batch size. The second kind of
contrastive learning loss called L𝑐𝑙2, is generated from both data
and model augmentation views. It can be calculated as:

L𝑐𝑙2 = L𝑐𝑜𝑛 (z̃1, z̃2) + L𝑐𝑜𝑛 (h̃1, z̃2) + L𝑐𝑜𝑛 (h̃2, z̃1) . (9)

In the second stage, we fix the parameters of encoder 𝑓\ (·) and
optimize𝑤𝜙1 (·) and𝑤𝜙2 (·) with respect to the performance of the
encoder. Denote \ ′ is the learned parameters by back-propagation
at the first stage, we use the learned encoder 𝑓\ ′ (·) to re-encode
the augmented sequence by Eq. (2), recompute L𝑐𝑙2 by Eq. (9), and
then leverage back-propagation to update the augmenters. The loss
is calculated as follows:

L1 = L𝑐𝑙2 . (10)

Then we get learned augmenters 𝑤𝜙1′ (·) and 𝑤𝜙2′ (·), where 𝜙1′
and 𝜙2′ represent the learned parameters by back-propagation at
second stage.

With this meta-learning paradigm, the difference between the
dimensions of learned views is more significant, and such infor-
mative and discriminative features promote the effectiveness of
contrastive learning. In addition, the two modules (i.e., encoder and
augmenters) are tightly coupled. More details can be seen in 4.4 of
the experimental section.

3.3 Contrastive Regularization
To prevent creating collapsed augmented views and avoid two aug-
menters generating too similar contrastive pairs, we further propose
a contrastive regularization within updating parameters [22]. Given
two augmented views z̃1 and z̃2, we calculate the similarity scores

Algorithm 1 The MCLRec Algorithm

Input: Training dataset {𝑆𝑢 } |𝑈 |𝑢=1, learning rate 𝑙 and 𝑙
′, hyper-

parameters _, 𝛽,𝛾 ;
Initialize: \ for encoder 𝑓\ (·), 𝜙1 for augmenter𝑤𝜙1 (·) and 𝜙2
for augmenter𝑤𝜙2 (·);
1: repeat
2: for 𝑡-th training iteration do
3: L0 = L𝑟𝑒𝑐 + _L𝑐𝑙1 + 𝛽L𝑐𝑙2 + 𝛾 · R
4: \ ← \ − 𝑙 △\ L0
5: Update encoder 𝑓\ (·) by minimizing L0
6: end for
7: for 𝑡-th training iteration do
8: L1 = L𝑐𝑙2 + 𝛾 · R
9: 𝜙1← 𝜙1 − 𝑙 ′ △𝜙1 L1
10: 𝜙2← 𝜙2 − 𝑙 ′ △𝜙2 L1
11: Update𝑤𝜙1 (·) and𝑤𝜙2 (·) by minimizing L1
12: end for
13: until \, 𝜙1, 𝜙2 converge

between them by the inner product and then split the output into
positive and negative score sets, 𝜎+ and 𝜎−, which is calculated as:

𝜎+, 𝜎− = 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (z̃1, z̃2), (11)

where 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 represents the inner product and split operations.
The scores calculated from the same sequence are split into positive
score sets 𝜎+, and others are split into negative score sets 𝜎−. After
that, the following formula is used to calculate the regularization:

𝑜𝑚𝑖𝑛 = min({min(𝜎+),max(𝜎−)}),
𝑜𝑚𝑎𝑥 = max({min(𝜎+),max(𝜎−)}),

(12)

and

R =
1
|𝜎+ |

∑︁
( [𝜎+ − 𝑜𝑚𝑖𝑛]+) +

1
|𝜎− |

∑︁
( [𝑜𝑚𝑎𝑥 − 𝜎−]+), (13)

where |𝜎+ | represents the number of positive samples and |𝜎− |
represents the number of negative samples. [·]+ denotes the cut-
off-at-zero function, which is defined as [𝑎]+ = max(𝑎, 0). Then
the Eq. (6) can be rewritten as follows:

L0 = L𝑟𝑒𝑐 + _L𝑐𝑙1 + 𝛽L𝑐𝑙2 + 𝛾R . (14)

The Eq. (10) can be rewritten as follows:

L1 = L𝑐𝑙2 + 𝛾R, (15)

where 𝛾 is a weight to balance the contrastive regularization and
other losses. The whole training process is detailed by Algorithm 1.

3.4 Discussion
3.4.1 Connections with Contrastive SSL in SR. Recent meth-
ods [5, 13, 25, 26, 30, 45] mainly take the contrastive objective as
an auxiliary task to complement the main recommendation task.
Among them, CL4SRec [45], CoSeRec [26], and ICLRec [5] augment
the input sequence at data level with cropping, masking, and re-
ordering. DuoRec [30] conducts neural masking augmentation on
the input sequence at the model level. LMA4Rec [13] introduces
Learnable Bernoulli Dropout (LBD [1]) to the encoder and com-
bines it with stochastic data augmentation to construct contrastive



Meta-optimized Contrastive Learning for Sequential Recommendation SIGIR’23, July 23–27, 2023, Taipei, Taiwan, China

views. SRMA [25] introduces three model augmentation methods

Table 2: Statistical information of experimented datasets.

Datasets #users #items #actions avg.length sparsity
Sports 33598 18357 296337 8.3 99.95%
Beauty 22363 12101 198502 8.8 99.93%
Yelp 30431 20033 316354 10.4 99.95%

(neural masking, layer dropping, and encoder complementing) and
combines them with data augmentation for constructing view pairs.
However, all the above models use either stochastic data augmen-
tation or stochastic model augmentation. Different from the above-
mentioned models, our model can be viewed as a two-stage process
combining both data and model augmentation operations. In the
first stage, stochastic data augmentation is applied to obtain two
pairwise contrastive views, and adaptively learn more informative
features from these views by using two learnable augmenters in
the second stage. Compared with other CL models, MCLRec lever-
ages data and model augmentation views to enlarge the number of
contrastive pairs without increasing the input data, thus extracting
more informative features for the model training. Meanwhile, the
meta-learning optimized approach is also implemented to guide
the training of learnable augmenters, which is an alternative way
to fuse these two augmentation manners. The main differences are
summarized in Table 1.

3.4.2 Time Complexity Analysis of MCLRec. The complexity
of ourmodel mainly comes from the training and the testing. During
training, the computation costs of our proposed method are mainly
from the optimization of \ , 𝜙1, and 𝜙2 with multi-task learning in
two stages. For stage one, since we have four objectives to optimize
the network 𝑓\ , the time complexity is O(|U|2𝑑 + |U|𝑑2).

For stage two, we have two objectives to optimize the aug-
menters, the time complexity is O(|U|𝑑2). The overall complexity
is dominated by the term O(|U|2𝑑), where |U| represents the num-
ber of users. In the testing phase, the proposed augmenters and con-
trastive objectives are no longer needed, which enables the model
to have the time complexity as the encoder, e.g., SASRec (O(𝑑 |I |)),
where |I | represents the number of items. Based on the above
analysis, our MCLRec achieves comparable time complexity when
computing with state-of-the-art contrastive SR models [5, 45].

4 EXPERIMENT
In this section, we conduct extensive experiments with three real-
world datasets, investigating the following research questions (RQs).
• RQ1: How does MCLRec perform compared to state-of-the-art
sequential recommendation models?
• RQ2: How effective are the key model components (e.g., stochas-
tic data augmentation, learnablemodel augmentation, contrastive
regularization) in MCLRec?
• RQ3: How does the meta-learning training strategy affect the
recommendation performance?
• RQ4: How does the robustness (e.g., training on small batch size,
adding noise on test datasets) of MCLRec?

4.1 Experimental Settings
4.1.1 Datasets. To verify the effectiveness of our methods, we
evaluate the model on three real-world benchmark datasets: Ama-
zon (Beauty and Sports)2 and Yelp3. Amazon dataset collects user re-
view data from amazon.com, which is one of the largest e-commerce
websites in the world. We use two sub-categories, Amazon-Beauty
and Amazon-Sports, in our experiments. Yelp is a dataset for busi-
ness recommendations. Following [26, 30, 49] for preprocessing, the
users and items that have less than five interactions are removed.
The statistics of the prepared datasets are summarized in Table 2.

4.1.2 Baseline Methods. We compare our models with the fol-
lowing three groups of sequential recommendation models:
• Non-sequential models: BPR [31] uses Bayesian Personalized
Ranking (BPR) loss to optimize the matrix factorization model.
• General sequential models: GRU4Rec [16] uses Gated Recur-
rent Unit (GRU) to model for the sequential recommendation.
Caser [36] uses both horizontal and vertical Convolution Neural
Networks (CNN) to model sequential behaviors. SASRec [17] for
the first time to use the attention mechanism to the sequential
recommendation and achieve a good performance.
• Self-supervised based sequentialmodels: BERT4Rec [35] uses
the deep bidirectional self-attention to capture the potential re-
lationships between items and sequences in Cloze task [6]. S3-
Rec [49] uses self-supervised learning to capture the correla-
tions between items. Since there is no attribute information in
our experiments, only the MIP (Masked Item Prediction) task,
called S3-RecMIP, is used for training. CL4SRec [45] uses both
data augmentation and contrastive learning in the sequential rec-
ommendation for the first time. CoSeRec [26] further proposes
two more informative data augment methods (i.e., ‘insert’ and
‘substitute’) to improve the performance of contrastive learning.
LMA4Rec [13] improves CoSeRec by introducing a Learnable
Bernoulli Dropout (LBD [1]) to the encoder, which is to extract
more signals from the stochastic augmented views. ICLRec [5]
learns users’ latent intents from the behavior sequences through
clustering and integrates the learned intents into the model via an
auxiliary contrastive SSL loss. DuoRec [30] proposes a sampling
strategy to formulate positive samples and uses dropout [34] to
conduct the model-level augmentation. SRMA [25] introduces
three model augmentation methods (i.e., ‘neural mask’, ‘layer
drop’, and ‘encoder complement’) and combines them with data
augmentation for constructing view pairs.

4.1.3 Evaluation Metrics. For evaluation purposes, we split the
data into training, validation, and testing datasets based on times-
tamps given in the datasets [5, 17, 30]. Specifically, the last item is
used for testing, the second-to-last item is used for validation, and
the rest for training. Following [21, 39], we rank the whole item
set without negative sampling. In order to evaluate the model effec-
tively, we use two widely-used evaluation metrics, including Hit
Ratio @𝑘 (HR@𝑘) and Normalized Discounted Cumulative Gain
@𝑘 (NDCG@𝑘), where 𝑘 ∈ {5, 10, 20}. Intuitively, the HR metric
considers whether the ground-truth is ranked amongst the top 𝑘
items while the NDCG metric is a position-aware ranking metric.

2https://jmcauley.ucsd.edu/data/amazon/
3https://www.yelp.com/dataset

https://jmcauley.ucsd.edu/data/amazon/
https://www.yelp.com/dataset
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Table 3: Performance comparisons of different methods. Where the bold score is the best in each row and the second-best
baseline is underlined. The last column is the relative improvements compared with the best baseline results.

Dataset Metric BPR GRU4Rec Caser SASRec BERT4Rec S3-RecMIP CL4SRec CoSeRec LMA4Rec ICLRec DuoRec SRMA MCLRec Improv.

Sports

HR@5 0.0123 0.0162 0.0154 0.0214 0.0217 0.0121 0.0231 0.0290 0.0297 0.0290 0.0312 0.0299 0.0328 5.13%
HR@10 0.0215 0.0258 0.0261 0.0333 0.0359 0.0205 0.0369 0.0439 0.0439 0.0437 0.0466 0.0447 0.0501 7.51%
HR@20 0.0369 0.0421 0.0399 0.0500 0.0604 0.0344 0.0557 0.0636 0.0634 0.0646 0.0696 0.0649 0.0734 5.46%
NDCG@5 0.0076 0.0103 0.0114 0.0144 0.0143 0.0084 0.0146 0.0196 0.0197 0.0191 0.0192 0.0199 0.0204 2.51%
NDCG@10 0.0105 0.0142 0.0135 0.0177 0.0190 0.0111 0.0191 0.0244 0.0245 0.0238 0.0244 0.0246 0.0260 5.69%
NDCG@20 0.0144 0.0186 0.0178 0.0224 0.0251 0.0146 0.0238 0.0293 0.0293 0.0291 0.0302 0.0297 0.0319 5.63%

Beauty

HR@5 0.0178 0.0180 0.0251 0.0377 0.0360 0.0189 0.0401 0.0504 0.0511 0.0500 0.0559 0.0503 0.0581 3.94%
HR@10 0.0296 0.0284 0.0342 0.0624 0.0601 0.0307 0.0642 0.0725 0.0735 0.0744 0.0825 0.0724 0.0871 5.58%
HR@20 0.0474 0.0427 0.0643 0.0894 0.0984 0.0487 0.0974 0.1034 0.1047 0.1058 0.1193 0.1025 0.1243 4.19%
NDCG@5 0.0109 0.0116 0.0145 0.0241 0.0216 0.0115 0.0268 0.0339 0.0342 0.0326 0.0340 0.0318 0.0352 2.92%
NDCG@10 0.0147 0.0150 0.0226 0.0342 0.0300 0.0153 0.0345 0.0410 0.0414 0.0403 0.0425 0.0398 0.0446 4.94%
NDCG@20 0.0192 0.0186 0.0298 0.0386 0.0391 0.0198 0.0428 0.0487 0.0493 0.0483 0.0518 0.0474 0.0539 4.05%

Yelp

HR@5 0.0127 0.0152 0.0142 0.0160 0.0196 0.0101 0.0227 0.0241 0.0233 0.0239 0.0429 0.0243 0.0454 5.83%
HR@10 0.0216 0.0248 0.0254 0.0260 0.0339 0.0176 0.0384 0.0395 0.0387 0.0409 0.0614 0.0395 0.0647 5.37%
HR@20 0.0346 0.0371 0.0406 0.0443 0.0564 0.0314 0.0623 0.0649 0.0636 0.0659 0.0868 0.0646 0.0941 8.41%
NDCG@5 0.0082 0.0091 0.0080 0.0101 0.0121 0.0068 0.0143 0.0151 0.0147 0.0152 0.0324 0.0154 0.0332 2.47%
NDCG@10 0.0111 0.0124 0.0113 0.0133 0.0167 0.0092 0.0194 0.0205 0.0196 0.0207 0.0383 0.0207 0.0394 2.87%
NDCG@20 0.0143 0.0145 0.0156 0.0179 0.0223 0.0127 0.0254 0.0263 0.0258 0.0270 0.0447 0.0266 0.0467 4.47%

Table 4: Ablation study with key modules. Where HR and
NDCG indicate HR@20 and NDCG@20.

Model

Dataset
Sports Beauty Yelp

HR NDCG HR NDCG HR NDCG
(A) MCLRec 0.0734 0.0319 0.1243 0.0539 0.0941 0.0467
(B) w/o L𝑐𝑙1 0.0705 0.0299 0.1243 0.0539 0.0918 0.0462
(C) w/o L𝑐𝑙2 0.0557 0.0238 0.1056 0.0394 0.0623 0.0254
(D) w/o R 0.0691 0.0291 0.1236 0.0529 0.0873 0.0445
(E) share 0.0707 0.0299 0.1231 0.0532 0.0923 0.0456

4.1.4 Implementation Details. The implementations of Caser,
S3-Rec, BERT4Rec, CoSeRec, LMA4Rec, ICLRec, DuoRec, and SRMA
are provided by the authors. BPR, GRU4Rec, SASRec, and CL4SRec
are implemented based on public resources. All parameters in these
methods are used as reported in their papers and the optimal set-
tings are chosen based on the model performance on validation data.
For MCLRec, we use transformer [17] as the encoder, and the num-
ber of the self-attention blocks and attention heads is set as 2. The
augmenters are 3-layer fully connected MLPs. We set 𝑑 as 64, 𝑛 as
50, the learning rate 𝑙 as 0.001, 𝑙 ′ as 0.001, and the batch size as 256.
_, 𝛽 are selected from {0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}
and 𝛾 is 0.1 × 𝛽 . The whole model is optimized with the Adam [20]
optimizer. We train the model with an early stopping strategy based
on the performance of validation data. All experiments are implied
on NVIDIA GeForce RTX 2080 Ti GPU.

4.2 Overall Performances (RQ1)
We compare the performance of all baselines with MCLRec for
Sequential Recommendation. Table 3 shows the experimental re-
sults of the compared models on three datasets, and the following
findings can be seen through it:
• The self-supervised based models perform more effectively than
classical models, such as BPR, GRU4Rec, Caser, and SASRec.
Among them, different from BERT4Rec and S3-RecMIP that use
MIP tasks to train the model, CL4SRec, CoSeRec, LMA4Rec,

ICLRec, DuoRec, and SRMA utilize data augmentation and con-
trastive learning for training, which lead to generally better re-
sults than BERT4Rec and S3-RecMIP. That indicates contrastive
learning paradigm may generate more expressive embeddings
for users and items by maximizing the mutual information.
• Compared to SRMA and CL4SRec, we can find that introduc-
ing model augmentation can further improve performance. In
addition, DuoRec performs better than other baselines on all
datasets. Compared with the previous SSL-based sequential mod-
els, DuoRec utilizes both supervised data augmentation and ran-
dom model augmentation, and thus improves the performance
by a large margin. That motivates us to combine two types of
augmentation operations within the training of CL.
• Benefiting from the meta-optimized model augmentation op-
eration, MCLRec significantly outperforms other methods on
all metrics across the different datasets. For instance, MCLRec
improves over the second-best result w.r.t. HR and NDCG by
3.94-8.41% and 2.47-5.69% on three datasets, respectively. The
reasons are concluded as: (1) Our learnable augmentation mod-
ule adaptively learns appropriate augmentation representations
for contrastive learning. (2) The meta-learning manner acts as
an effective way for training the augmentation model as well
as boosting recommendation accuracy. The results support that
our contrastive recommendation framework can enable different
models to learn more informative representations.

4.3 Ablation Study (RQ2)
To analyze the effectiveness of each component of our model, we
conduct several ablation experiments about MCLRec. HR@20 and
NDCG@20 performances of different variants are shown in Table 4,
where w/o denotes without, (A) represents MCLRec, (B) removes
the L𝑐𝑙1 by setting _ to 0 in Eq. (14), (C) removes the L𝑐𝑙2 (, which
is equivalent to CL4SRec), (D) removes the contrastive regulariza-
tion component, and (E) denotes the two augmenters that share
parameters (i.e., 𝜙1 = 𝜙2). From this table, we can find that MCLRec
achieves the best results on all datasets, which indicates all com-
ponents are effective for our framework and the meta-optimized
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Figure 2: T-SNE visualization of the model augmentation
views z̃1 and z̃2 trained with w/o R and w R on Sports and
Yelp. Where different colors represent negative pairs.

contrastive learning enhances the model’s ability to learn more
expressive representations. By comparing (A) with (C) and (D), we
find that learnable model augmentation and contrastive regular-
ization could significantly improve the model accuracy, which is
consistent with our statements. By comparing (B) and (C), it can be
observed that learnable augmentation is much more efficient than
random data augmentation. By comparing (A) and (B), the combi-
nation of data and model level augmentation could further boost
model performance. By comparing (A) and (E), we can find that
sharing parameters of augmenters will decrease the results. This
may be the fact that using the same augmenter may further lead
to a high similarity of learned augmentation views, thus making
the performance degraded. As shown in Table 4, after removing
the regular term, the performance of our model decreases on all
three datasets, which indicates the effectiveness of the regular term.
To further analyze the effect of the regular term on the model, we
visualize the learned augmentation views z̃1 and z̃2 via T-SNE [37].
To simplify, we denote without as w/o and with as w. We use both
w/o R and w R to train our model for 300 epochs in an end-to-end
manner respectively and utilize T-SNE to reduce the augmented
embeddings into two-dimensional space. Limited by the space, the
results of Sports and Yelp are presented in Figure 2. We find that
w/o R allows the enhancer to learn collapsed view representations
(i.e., the representations of both positive and negative pairs are too
"dispersed"), and w R allows the augmenters to learn more discrim-
inative features (i.e., the positive pairs are "close" enough and the
negative pairs are relative "far away"). This further demonstrates
the effectiveness of the regular term. In addition, we found that
simply adding R to other models (e.g., CL4SRec and DuoRec) will
make the performance worse. The reason might be that R is mainly
designed to constrain model augmenters.
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Figure 3: Comparison of two versions MCLRec (have dif-
ferent train strategies) with CL4SRec and DuoRec on all
datasets.
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Figure 4: Performances comparison w.r.t. Batch Size.

4.4 Effectiveness of Meta Optimization (RQ3)
We conduct several experiments based onMCLRec to analyze the ef-
fectiveness of meta optimization. We first compare the performance
of the joint-learning strategywithMCLRec, calledMCLRec-J, where
the joint-learning strategy means the whole model is trained ac-
cording to L0 (Eq. (14)) in one step. As shown in Figure 3, our meta-
optimized based manner outperforms others on all datasets. Specifi-
cally, on the one hand, MCLRec-J performs better than CL4SRec and
DuoRec, which demonstrates the effectiveness of learnable model
augmentation. On the other hand, MCLRec beats the MCLRec-J.
The main reason is that meta-learning help CL to learn more dis-
criminative augmentation views. To specify this point, we visualize
the learned augmentation views h̃1 and h̃2 via T-SNE [37]. We
use the joint-learning strategy and meta-learning strategy to train
our model for 300 epochs in an end-to-end manner respectively
and utilize T-SNE to reduce the augmented embeddings into two-
dimensional space. Limited by the space, the results of Sports and
Yelp are presented in Figure 5. We intuitively observe that the rep-
resentations of the negative pairs generated by MCLRec are more
"scattered" and the representations of positive pairs generated by
MCLRec are "close" than that of MCLRec-J, which indicates that
meta-learning strategy helps avoid collapsed results and outputs
more informative representations for recommendation. The main
reason may be that there are two modules (i.e., encoder and aug-
menters) with parameters that need to be updated, and the target
objects of the two modules are different, which leads to a possible
gap between the two objects, thus directly using joint learning to
update their parameters may lead to suboptimal results by lowering
the performance of both modules [18].
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Figure 5: Comparison of the data augmentation views, h̃1

and h̃2, trained with different strategies on Sports and Yelp
datasets. The dimensions are reduced via T-SNE, where dif-
ferent colors represent negative pairs.

4.5 Further Analysis (RQ4)
In this section, we conduct experiments on the Sports and Yelp
datasets to verify the robustness of MCLRec. For all models in the
following experiments, we only change one variable at a time while
keeping other hyper-parameters optimal.

4.5.1 Impact of Batch Size. From Figure 4, we can see that re-
ducing the batch size deteriorates the performance of all models.
Comparing SASRec and other models, it can be shown that adding a
self-supervised auxiliary task can significantly improve the model’s
performancewith different batch sizes.Most importantly,MCLRec’s
performance with 64 batch size can outperform all other models
with 256 batch size on Sports and Yelp. It indicts that, comparing
MCLRec and Cl4SRec, our proposed method can preforms well
without of large batch size. The reason can be concluded that the
introduction of learnable model augmentation allows contrastive
learning can be trained with more informative augmentation views
including h̃1 and h̃2, z̃1 and z̃2.

4.5.2 Hyper-parameters Analysis. The final loss function of
MCLRec in Eq. (14) is a multi-task learning loss. Figure 6 shows
the impact of assigning different weights to 𝛽 and _ on the model.
We observe that the performance of MCLRec gets peak value to
different 𝛽 and _, which demonstrates the effectiveness of the pro-
posed framework and manifests that introducing suitable weights
can boost the performance of recommendation. From these figures,
𝛽 = 0.4 and _ = 0.04 for Sports, 𝛽 = 0.05 and _ = 0 for Beauty, and
𝛽 = 0.1 and _ = 0.03 for Yelp are generally proper to MCLRec. The
weight of L𝑐𝑙2, i.e., 𝛽 , is commonly larger than _, which demon-
strates that learnable model augmentation generally gains more
importance than stochastic data augmentation.
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Figure 6: Performances of MCLRec w.r.t. different weights
assigned to the L𝑐𝑙1 and the L𝑐𝑙2 on all datasets.
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Figure 7: Performance comparison w.r.t. different Noise Ra-
tio on Sports and Yelp datasets.

4.5.3 Robustness to Noise Data. To verify the robustness of
MCLRec against noise interactions, we randomly add a certain
proportion (i.e., 5%, 10%, 15%, 20%, 30%) of negative items into the
input sequences during testing, and examine the final performance
of MCLRec and other baselines. From Figure 7, we can see that
adding noisy data deteriorates the performance of all models. By
comparing SASRec and other models, it can be seen that adding a
contrastive self-supervised auxiliary task can significantly improve
the model’s robustness to noise data. By comparing CL4SRec with
other models, we can see that introducing model augmentation
(e.g., DuoRec, SRMA, and MCLRec) or other auxiliary tasks (e.g.,
ICLRec) can further alleviate the noise data issues. By comparing
MCLRec and other models, it can be seen that our model consis-
tently performs better than other models. Especially, with 15% noise
proportion, our model can even outperform other models without
noise data on two datasets. It indicates that, comparing MCLRec
with CL4SRec and SRMA, our proposed method can perform well
against the noise data. The reason can be concluded that with the
help of meta training strategy and regular term, our augmenters can
adaptively learn appropriate representations from the stochastic
augmented views for contrastive learning.

4.5.4 Robustness w.r.t. User Interaction Frequency. To fur-
ther analyze the robustness of MCLRec against sparse data (e.g.,
limited historical behaviors), we divide the user behavior sequences
into three groups based on their length and keep the total num-
ber of behavior sequences constant. The statistics of the prepared
datasets are summarized in Table 5. And all models are trained and
evaluated independently on each group of users. From Figure 8, we
observe that reducing the interaction frequency deteriorates the
performance of all models. By comparingMCLRec with SASRec and
CL4SRec, we find that MCLRec can consistently perform better than
SASRec and CL4SRec among all user groups. This demonstrates
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Table 5: Statistical information of experimented datasets.

DataSets Sports Yelp
#length =5 6-8 >8 =5 6-8 >8
#users 11416 14209 9973 8076 11109 11246
#items 18357 18357 18357 20032 20030 20033
#actions 57080 95564 143693 40380 75082 200892
sparsity 99.97% 99.96% 99.92% 99.98% 99.97% 99.91%

that MCLRec can further alleviate the data sparsity problem by in-
troducing more informative augmentation features for contrastive
learning, thus consistently benefiting the embedding representa-
tion learning even when the historical interactions are limited. By
Comparing MCLRec with the best baseline model DuoRec, it can be
seen that the improvement of MCLRec is mainly because it provides
better recommendations to users with low interaction frequency.
This shows that combining data augmentation and learnable model
augmentation is beneficial, especially when the recommender sys-
tem faces the problem of sparse data, where the information of each
individual user sequence is limited.

5 RELATEDWORK
5.1 Sequential Recommendation
Sequential recommendation system [38, 47] aims to predict succes-
sive preferences according to one’s historical interactions, which
has been heavily researched in academia and industry. Classical
Markov Chains [32], Recurrent Neural Networks (RNN)-based [16],
Convolutional Neural Networks (CNN)-based [36], Transformer
-based [10, 17, 23, 35] and Graph Neural Networks (GNN)-based [2,
43] SR models concentrate on users’ ordered historical interactions.
However, these sequential models are commonly limited by the
sparse and noisy problems in practical life.

5.2 Self-supervised Learning for
Recommendation

Motivated by the immense success of Self-Supervised Learning
(SSL) in Natural Language Process (NLP) [7] and Computer Vision
(CV) [8, 14], and its effectiveness in solving data sparsity prob-
lems, a growing number of works are now applying SSL to recom-
mendation. Among them, some Bidirectional Encoder Representa-
tions from Transformer (BERT) like methods to introduce the self-
supervised pre-trainingmanner into recommendation. BERT4Rec [4,
35] leverages pre-trained BERT to generate the representation of
the target item from the user’s historical interactions and calcu-
late the generated representation’s similarity with all candidates
to make recommendations. S3-Rec [49] introduces four auxiliary
self-supervised tasks to capture the sequential information by max-
imizing the mutual information of different views. Meanwhile, the
resurgence of Contrastive Learning (CL) significantly promotes the
progress of SSL’s research. CL4SRec [45] learns the representations
of users by maximizing the agreement between differently aug-
mented views of the same user’s chronological interactions and
optimizes the contrastive loss with the main task simultaneously.
CoSeRec [26] further proposes two informative data augmentation
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Figure 8: Performance comparison on different user groups
among SASRec, CL4SRec, DuoRec and MCLRec.

methods by taking into account the relevance of items to con-
struct view pairs. MMInfoRec [29] applies an item level contrastive
learning for feature-based sequential recommendation. ICLRec [5]
employs clustering to extract users’ intent distributions from users’
behavior sequences and integrates the captured intent into the
sequential model using a contrastive SSL loss. More prior works
also explore the application of CL to graph-based recommendation.
SGL [42] generates two augmented views with graph augmentation
and optimizes the node-level contrastive loss. GCA [50] explores
adaptive topology-level and node-attribute-level augmentation op-
erations for generating high-quality contrastive views. DHCN [44]
employs contrastive tasks for hypergraph representation learning
for session-based recommendation. Different from constructing
views only by adopting data augmentation, DuoRec [30] chooses
to construct view pairs with model augmentation, which could
maintain the sequential correlations in the process of training.
LMA4Rec [13] introduces Learnable Bernoulli Dropout (LBD [1])
to the encoder for extracting more signals from the stochastic data
augmented views. SRMA [25] proposes three levels of model aug-
mentation methods and combines them with data augmentation to
construct view pairs. However, these augmentation operations are
all hand-crafted and cannot be learned end to end.

5.3 Meta-Learning for Recommendation
Meta-learning, which is known as learning to learn [11], has aroused
comprehensive interest in recommender systems. Most meta-learn-
ing-based recommendation models are utilized to initialize the
parameters for dealing with the cold-start problems in recommen-
dation systems [9, 27, 33, 40]. For example, MetaHIN [27] leverages
Heterogeneous Information Networks (HIN) to capture rich se-
mantics in the meta-learning setting at the data and model level.
MetaCF [40] learns a fast adaptive collaborative filtering model for
new users with meta-learning. Recently, some researchers [19, 28,
41] have also explored using meta-learning to find optimal hyper-
parameters for recommendation. For example, CML [41] proposes
a meta contrastive encoding scheme to learn an explicit weight-
ing function for the integration of multi-behavior contrastive loss.
MeLON [19] adaptively achieves a better learning rate for new
coming user-item interactions. Related to meta-learning, our model
is designed to update the parameters of learnable augmenters.

6 CONCLUSION
In this paper, we developed a novel contrastive learning-based
model called meta-optimized contrastive learning (MCLRec) for
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sequential recommendation. We took the advantage of data and
learnable model augmentation in contrastive learning to create
more informative and discriminative features for generating recom-
mendations. By applying meta-learning, the augmentation model
could update its parameters in terms of the encoder’s performance.
Extensive experimental results showed that the proposed method
outperforms the state-of-the-art contrastive learning based sequen-
tial recommendation models. In addition, due to the generalization
of our framework, in the future, MCLRec could be applied to many
other sequential recommendation models and further improve their
performance.
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